安徽省获中央*政新能源汽车充电基础设施奖励资金3.8亿元

2022-06-23 17:19:19 文章来源:网络

本文转自:**联社

【安徽省获中央**政新能源汽车充电基础设施奖励资金3.8亿元】**联社6月23日电,从安徽省**政厅官网获悉,近期,安徽省获中央**政新能源汽车充电基础设施奖励资金3.8亿元,专项用于充电基础设施建设和运营。安徽省**政厅与安徽省经信厅等部门及时研究确定资金分配方式和重点支持领域,在聚焦对各市新能源汽车推广应用奖励的基础上,重点支持**换电模式应用综合试点城市、智慧城市基础设施和智能网联汽车协同发展试点城市、燃料电池汽车示范城市**建设,助力新能源汽车下乡,推动城乡充电基础设施建设。

爱因斯坦有曰,“瀚宇初开,万物当生也。万物可谓振动,能光旋律之荡漾焉。”(注:作者中译)。AI新技术革命时代,大算力芯片也拨响了自动驾驶ADS的琴弦。大珠小珠般的AI算法在大算力驱动下应运而振,应时而动,解决了ADS从L2到L5逐级演进中的众多技术难题。ADS每增加**,算力需求也会呈现十倍速上升,L4级别可预计的算力需求在1000TOPS,L5级别估计在2000-10000TOPS。如图1所示,后摩尔时代工艺更新**能提升放缓,延续**创新的边际效益递减,新兴的大算力架构在不断涌现,加上驾驶AI算法高速迭代演进,在未来5-10年内可能会为后来的技术追赶者提供非常奇妙的一个直线超车的机会窗口。

图1.大算力时代自动驾驶ADS领域的机遇与挑战

当前ADS自动驾驶采用决策层后融合的方式,其局限**主要表现在在极端恶劣气候与复杂遮挡等不确定**场景下分别进行单模结构化信息提取后再进行融合决策,每个通道信息会有不同层面丢失,很难能够进行多模有效互补与特征提取共享,算力内卷且**能远低于预期。

未来ADS算法会进入一个全新的2.0阶段,4D空间下基于时空的多模感知与融合推理,也就是特征提取/统计推断/应急预测相结合,实现在动态复杂的有噪声干扰等场景下,全程安全无碰撞的高效行驶。挑战可以体现在,动态随机的人车物交互,多变天气路况,以及突发交通事件等。

ADS算法2.0从决策层后融合走向特征级前融合,当前行业ADS2.0算法主要演进方向为:

多模感知:主要是针对Camera/LiDAR/Radar海量数据流进行特征提取,DL网络主流趋势是卷积CNN或者贝叶斯NN+Transformer的组合架构,在统一的特征空间实现多模感知,特征融合共享以及多任务来提升算力的整体效率。

融合推理:主要是基于模型与基于数据的双学习模式,DL网络主流趋势是基于目标交互GNN或基于统计模型的贝叶斯RL强化学习或On-Policy应急学习,实现ADS安全可信的预测规划与控制。

ADS2.0算法演进与对算力的新需求,可以总结为:

演进趋势1:感知定位预测决策控制模块化处理流程中,从决策层后融合走向感知层前融合,算法能够在统一空间支持多模融合,多任务共享;

演进趋势2:预测与规划联合建模,从可获得的Off-policy数据进行学习,能够**习处理不确定**下的安全**问题,解决可解释问题,持续学习解决新场景问题;

算力新需求:从compute-bound(矩阵-矩阵乘)走向memory-bound(矩阵-矢量乘),从偏计算走向偏存取。

当前市场上主流算力NPU芯片,都存在几个共**问题,一是算法效率低,多数只针对CNN(例如3x3卷积)优化;二是内存墙问题:处理单元PE存算分离,数据共享难;三是能耗墙问题:数据重复搬移,耗能增加>30-70%。所以,当前针对某些特定算法的芯片,无法解决未来ADS2.0的需求。

从工程实践上看,ADS2.0算法需通过“**件预埋,算法迭代,算力均衡”,提供一个向前兼容的解决方案,以通用大算力(CPU的5-10倍**能提升,NPU的100-500倍**能提升)来解决未来不确定**的算法演进:

底层架构的演进:从存算分离过渡到近内存计算,**终走向内存计算;

数据通道与模型:高速数据接口;数据压缩+模型压缩+低**度逼近计算+稀疏计算加速;

并行的顶层架构:模型-**件联合设计,以及**设计可配置+**件调度+软运行可编程调度引擎。

未来,自动驾驶算法不会止步于ADS2.0,而能够真正支持人类自动驾驶梦想的算法ADS3.0趋势,我们估计会采用一个DNN网络来进行端到端学习。设想一下,有足够的专家驾驶数据用来做模仿学习或采用RL**习模式,可以有效降低数据标注的信息瓶颈与严重依赖,从而能够从多模多样化数据层面进行非直接的推理或者**弈类的对抗学习。ADS3.0目前来看模型的可信与可解释程度依然远低于预期。ADS系统的总体演进趋势,可以总结为:

场景演进:负载多样**

从数量有限的摄像头设置走向Camera+LiDAR+Radar多模态组合。

趋势演进:算法多样**

从CNN+Rule-based方案走向CNN,RNN,Transformer,GNN,Bayesian,DeepReinforcementLearning,DynamicDNN,NASGeneratedDNN,VariablyQuantizedDNN多算法组合。

大算力时代,ADS系统首先是模仿人类的驾驶行为,通过注意力机制,期望在感知定位预测规划控制领域提供远超人类的决策能力。这需要我们在AI的三要素(算法、算力、数据)基础上添加第四要素,知识或者常识。

而上述要素,均需要在充分理解算法的快速迭代的大趋势下,拥有充足的超大通用算力,ADS系统在离线模仿学习人类驾驶先验知识经验与规则的基础上,能够提供在线自主学习能力,通过**习激励与**弈共赢策略应对众多不确定**的人机交互的复杂环境,能够对决策不充分的场景下做到安全应对和提供可信解释能力。此外,大算力芯片也需要能够通过额外的算力,对芯片内**级的并行计算单元提供故障检测与安全规避能力,对大量多模传感器的部分或者完全失效进行有效检测与应对决策处理,对驾驶环境针对传感器的主动攻击与外界目标非主动干扰进行有效检测与实时决策处理。

上一篇:华晨宝马生产基地大规模升级里达工厂开业

下一篇:最后一页
本站所刊登的各种资讯﹑信息和各种专题专栏资料,均为酒泉网版权所有,未经协议授权禁止下载使用。

Copyright © 2000-2020 All Rights Reserved